18756 Stone Oak Park Way, Suite200, San Antonio TX 78258 USA
100 Queen St W, Brampton, ON L6X 1A4, Canada
country flagUnited States
share button

20767: Implementing SQL Data Warehouse Training

What 20767: Implementing SQL Data Warehouse training is all about?

20767: Implementing SQL Data Warehouse Training teaches professionals the leading methodologies to build a data warehouse with the help of MS SQL Server and Azure SQL Data Warehouse. This technical course demonstrates how to apply a data warehouse platform to support a BI solution. It provides comprehensive knowledge of the main hardware considerations for developing a data warehouse. Throughout this course, trainees will learn to implement a logical design and a physical design for a data warehouse. It also elaborates on the critical features of SSIS and teaches how to create dynamic packages, including parameters and variables. This training program is ideal for a data professional who works as a Business Intelligence Developer. This program covers all the essential topics from implementing control flow and debugging SSIS packages to applying to a master data services school.

  • Delivery Format:
Date: Oct 19, 2020 | 9:00 am - 5:00 pm EST
Location: Online
$2875 USD
  • Delivery Format:
Date: Nov 30, 2020 | 9:00 am - 5:00 pm EST
Location: Online
$2875 USD
What are the course objectives for 20767: Implementing SQL Data Warehouse training?
  • Describing data warehousing solution’s key elements.
  • Describe the major hardware considerations to build the data warehouse
  • Implementing a logical and physical design for the data warehouses
  • Creating column store indexes
  • Implement the Azure SQL Data Warehouse
  • Describing SSIS’s key features
  • Using SSIS for implementing data flow
  • Using precedence constraints and tasks for implementing control flow
  • Create variables and parameters consisting of dynamic packages
  • Debugging SSIS packages
  • Describing the considerations for implementing ETL solution
  • Implementing Data Quality Services
  • Implementing the Master Data Services model
  • Describe using of custom components for extending SSIS
  • Deploying SSIS projects
  • Describing Business Intelligence and common Business Intelligence scenarios
Who should attend 20767: Implementing SQL Data Warehouse training?

The database professionals looking to upgrade to a BI developer role are the primary audience for the course. This course will teach them hands-on work to create Business Intelligence solutions that include implementing Data Warehouse, data cleansing and ETL.

What are the prerequisites for 20767: Implementing SQL Data Warehouse training?
  • Knowledge of Microsoft Windows operating system; and, its core functionality
  • Knowledge of relational databases
  • Experience in database designing
What is the course outline for 20767: Implementing SQL Data Warehouse training?
  • 1. Introduction to Data Warehousing
  • a). Overview of Data Warehousing
  • b). Considerations for a Data Warehouse Solution
  • c). Lab : Exploring a Data Warehouse Solution
  • 2. Planning Data Warehouse Infrastructure
  • a). Considerations for data warehouse infrastructure.
  • b). Planning data warehouse hardware.
  • c). Lab : Planning Data Warehouse Infrastructure
  • 3. Designing and Implementing a Data Warehouse
  • a). Data warehouse design overview
  • b). Designing dimension tables
  • c). Designing fact tables
  • d). Physical Design for a Data Warehouse
  • e). Lab : Implementing a Data Warehouse Schema
  • 4. Columnstore Indexes
  • a). Introduction to Columnstore Indexes
  • b). Creating Columnstore Indexes
  • c). Working with Columnstore Indexes
  • d). Lab : Using Columnstore Indexes
  • 5. Implementing an Azure SQL Data Warehouse
  • a). Advantages of Azure SQL Data Warehouse
  • b). Implementing an Azure SQL Data Warehouse
  • c). Developing an Azure SQL Data Warehouse
  • d). Migrating to an Azure SQ Data Warehouse
  • e). Copying data with the Azure data factory
  • f). Lab : Implementing an Azure SQL Data Warehouse
  • 6. Creating an ETL Solution
  • a). Introduction to ETL with SSIS
  • b). Exploring Source Data
  • c). Implementing Data Flow
  • d). Lab : Implementing Data Flow in an SSIS Package
  • 7. Implementing Control Flow in an SSIS Package
  • a). Introduction to Control Flow
  • b). Creating Dynamic Packages
  • c). Using Containers
  • d). Managing consistency.
  • e). Lab : Implementing Control Flow in an SSIS Package
  • f). Lab : Using Transactions and Checkpoints
  • 8. Debugging and Troubleshooting SSIS Packages
  • a). Debugging an SSIS Package
  • b). Logging SSIS Package Events
  • c). Handling Errors in an SSIS Package
  • d). Lab : Debugging and Troubleshooting an SSIS Package
  • 9. Implementing a Data Extraction Solution
  • a). Introduction to Incremental ETL
  • b). Extracting Modified Data
  • c). Loading modified data
  • d). Temporal Tables
  • e). Lab : Extracting Modified Data
  • f). Lab : Loading a data warehouse
  • 10. Enforcing Data Quality
  • a). Introduction to Data Quality
  • b). Using Data Quality Services to Cleanse Data
  • c). Using Data Quality Services to Match Data
  • d). Lab : Cleansing Data
  • e). Lab : De-duplicating Data
  • 11. Using Master Data Services
  • a). Introduction to Master Data Services
  • b). Implementing a Master Data Services Model
  • c). Hierarchies and collections
  • d). Creating a Master Data Hub
  • e). Lab : Implementing Master Data Services
  • 12. Extending SQL Server Integration Services (SSIS)
  • a). Using scripting in SSIS
  • b). Using custom components in SSIS
  • c). Lab : Using scripts
  • 13. Deploying and Configuring SSIS Packages
  • a). Overview of SSIS Deployment
  • b). Deploying SSIS Projects
  • c). Planning SSIS Package Execution
  • d). Lab : Deploying and Configuring SSIS Packages
  • 14. Consuming Data in a Data Warehouse
  • a). Introduction to Business Intelligence
  • b). An Introduction to Data Analysis
  • c). Introduction to reporting
  • d). Analyzing Data with Azure SQL Data Warehouse
  • e). Lab : Using a data warehouse

Yes, it is. Then exam is 75% oriented to SQL Server 2016 on-premises. It is 25% oriented to Azure Big Data, Azure SQL Data Warehouse and other related topics.

It is similar to 70-463 exam; however, this exam now covers Integrate with Cloud data and big data chapter and some other updates.

Yes, it prepares you for MCSA: SQL 2016 BI Development and MCSE: Data Management and Analytics certifications.

The class room live lab course outline as described by Microsoft contains 17 exercises including - Exploring a Data Warehouse Solution, Planning Data Warehouse Infrastructure, Using Columnstore Indexes, Implementing a Data Warehouse Schema and Implementing an Azure SQL Data Warehouse etc.

5 Days | $ 2875
  247 Ratings

1547 Learners